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Preface

The 4th GeoShanghai International Conference was held on May 27–30, 2018, in
Shanghai, China. GeoShanghai is a series of international conferences on
geotechnical engineering held in Shanghai every four years. The conference was
inaugurated in 2006 and was successfully held in 2010 and 2014, with more than
1200 participants in total. The conference offers a platform of sharing recent
developments of the state-of-the-art and state-of-the-practice in geotechnical and
geoenvironmental engineering. It has been organized by Tongji University in
cooperation with the ASCE Geo-Institute, Transportation Research Board, and
other cooperating organizations.

The proceedings of the 4th GeoShanghai International Conference include eight
volumes of over 560 papers; all were peer-reviewed by at least two reviewers. The
proceedings include Volumes 1: Fundamentals of Soil Behavior edited by
Dr. Annan Zhou, Dr. Junliang Tao, Dr. Xiaoqiang Gu, and Dr. Liangbo Hu;
Volume 2: Multi-physics Processes in Soil Mechanics and Advances in
Geotechnical Testing edited by Dr. Liangbo Hu, Dr. Xiaoqiang Gu, Dr. Junliang
Tao, and Dr. Annan Zhou; Volume 3: Rock Mechanics and Rock Engineering
edited by Dr. Lianyang Zhang, Dr. Bruno Goncalves da Silva, and Dr. Cheng Zhao;
Volume 4: Transportation Geotechnics and Pavement Engineering edited by
Dr. Xianming Shi, Dr. Zhen Liu, and Dr. Jenny Liu; Volume 5: Tunneling and
Underground Construction edited by Dr. Dongmei Zhang and Dr. Xin Huang;
Volume 6: Advances in Soil Dynamics and Foundation Engineering edited by
Dr. Tong Qiu, Dr. Binod Tiwari, and Dr. Zhen Zhang; Volume 7: Geoenvironment
and Geohazards edited by Dr. Arvin Farid and Dr. Hongxin Chen; and Volume 8:
Ground Improvement and Geosynthetics edited by Dr. Lin Li, Dr. Bora Cetin, and
Dr. Xiaoming Yang. The proceedings also include six keynote papers presented at
the conference, including “Tensile Strains in Geomembrane Landfill Liners” by
Prof. Kerry Rowe, “Constitutive Modeling of the Cyclic Loading Response of Low
Plasticity Fine-Grained Soils” by Prof. Ross Boulanger, “Induced Seismicity and
Permeability Evolution in Gas Shales, CO2 Storage and Deep Geothermal Energy”
by Prof. Derek Elsworth, “Effects of Tunneling on Underground Infrastructures”
by Prof. Maosong Huang, “Geotechnical Data Visualization and Modeling of Civil

v



Infrastructure Projects” by Prof. Anand Puppala, and “Probabilistic Assessment and
Mapping of Liquefaction Hazard: from Site-specific Analysis to Regional
Mapping” by Prof. Hsein Juang. The Technical Committee Chairs, Prof. Wenqi
Ding and Prof. Xiong Zhang, the Conference General Secretary, Dr. Xiaoqiang Gu,
the 20 editors of the 8 volumes and 422 reviewers, and all the authors contributed to
the value and quality of the publications.

The Conference Organizing Committee thanks the members of the host orga-
nizations, Tongji University, Chinese Institution of Soil Mechanics and
Geotechnical Engineering, and Shanghai Society of Civil Engineering, for their
hard work and the members of International Advisory Committee, Conference
Steering Committee, Technical Committee, Organizing Committee, and Local
Organizing Committee for their strong support. We hope the proceedings will be
valuable references to the geotechnical engineering community.

Shijin Feng
Conference Chair

Ming Xiao
Conference Co-chair
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Monte-Carlo Simulation of Post-construction
Settlement After Vacuum Consolidation

and Design Criterion Calibration

Wei He1(&), Mathew Sams1, Barry Kok1, and Pak Rega2

1 Geoinventions Consultancy Services, Brisbane, QLD 4119, Australia
2 Indonesia Port Corporation, Jakarta Utara, Jakarta 14310, Indonesia

Abstract. Reliability-based design is required to minimise risk induced by soil
properties variation and laboratory tests discrepancy in geotechnical engineering.
A procedure was proposed to analyse probability of post-construction settlement
(PCS) after vacuum consolidation, and to calibrate the design criteria to achieve a
target reliability index. A Monte-Carlo simulation based on analytical solution of
vacuum consolidation was developed to incorporate both primary and secondary
consolidation settlement. The reduction of secondary consolidation coefficient
during construction was considered in the method. This design and analysis
approach were applied in the design review of Kalibaru port, Indonesia. Statis-
tical analysis on soil properties was performed based on comprehensive inves-
tigations. The original design was reviewed by using both deterministic analysis
with FEM and reliability-based analysis with the proposed method. Lastly, the
coefficient of variation (COV) of 1.164 was found for PCS, and design criteria
were calibrated to target different levels of Pe, from 6.7% to 25%.

Keywords: Reliability-based geotechnical design � Reclamation
Post-construction settlement (PCS) � Monte-Carlo simulation

1 Introduction

In a geotechnical design, significant uncertainties exist in the process of defining
geomaterial properties, which need to be evaluated via reliability analysis. In Kalibaru
port, Indonesia, prefabricated vertical drains (PVDs) with preloading and vacuum is
proposed to improve the soft ground at a 900 � 2600 m site. Comprehensive inves-
tigations were performed to mitigate potential risk. However, there was no similar case
using reliability-based design (RBD) could be found in literature. Therefore, a RBD
procedure and analysis method need to be developed.

Several reliability-based analysis approaches have been developed for geotechnical
structures [1], such as the first-order reliability method (FOSM), the second-order
reliability method (SORM), and numerical simulations. Monte-Carlo simulation is a
numerical process of repeatedly calculating a performance function, in which the
variables within the function are random or contain uncertainty with prescribed
probability distributions. A large number of outputs can be obtained and used in
statistical analysis for directly estimating the probability of failure (Pf), or the

© Springer Nature Singapore Pte Ltd. 2018
L. Li et al. (Eds.): GSIC 2018, Proceedings of GeoShanghai 2018 International Conference:
Ground Improvement and Geosynthetics, pp. 76–88, 2018.
https://doi.org/10.1007/978-981-13-0122-3_9
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probability of exceedance (Pe). In this way, conventional deterministic modelling can
be extended to reliability analysis without complex concept and algorithms.

In this paper, RBD procedure based on Monte-Carlo simulation was developed and
applied in the Kalibaru port. The mean value of PCS and COV were obtained, then the
design criterion was calibrated to achieve reliability index of 1.5. This also provides a
detailed case study for future engineering practice.

2 Analytical Solution of Vacuum Consolidation Combined
with Preloading

PVDs with vacuum and preloading have been widely applied to accelerate the con-
solidation of soft ground all over the world. The successful applications include Port of
Brisbane, Ballina Bypass, and Sunshine Coast Motorway, in Australia [2, 3]; Tianjin
Port and Wenzhou Reclamation, in China [4, 5]; Philadelphia International Airport, in
USA [6]; North South Expressway, in Malaysia [7]; Second Bangkok International
Airport, in Thailand [8]; Shin-Moji Oki Disposal Pond, in Japan [9]. In these projects,
fill preloading was combined with vacuum to avoid excessively high embankment and
a lengthy preloading period to achieve the same amount of consolidation degree.

A typical cylindrical element of a PVD with preloading and vacuum is shown in
Fig. 1. The PVD has the equivalent radius of rw, and the influence radius of re. A smear
zone with the radius of rs is formed during vertical drains installation with a steel
mandrel which significantly remoulds its immediate vicinity. Studies showed that, the
radius of the smear zone is about 2.5 times the equivalent radius of the mandrel, and the
lateral permeability within the smear zone is 61%–92% of the outer undisturbed zone
[10]. Preloading, p0, is applied on the ground surface, and vacuum pressure, ps, is
applied via pump connected to PVDs. Experience has shown that the vacuum pressure
applied in field through PVDs may decrease with depth. Let the decreasing rate is k,
then the suction propagated to the toe is ps- kl when the length of PVDs, l, is not
sufficient to reduce the suction down to zero. This pressure loss rate, k, was found up to
3 kPa/m in experiments [11].

Fig. 1. Illustration of PVDs with preloading and vacuum pressure [2]
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Settlement development by using PVDs with preloading and vacuum incorporates
both primary and secondary consolidation.

Primary consolidation. The primary consolidation of soil with PVDs is dominated by
radial drainage. The theory of radial drainage and consolidation has been developed by
many researchers [12, 13]. Consider a thin layer with DH in thickness, the excess pore
pressure during vacuum consolidation can be solved by:

�uh;t
u0

¼ 1þ ps
u0

� �
e

�8cht

ld2e

� �
� ps
u0

ð1Þ

where, �uh;t is excessive pore pressure at depth of h and time of t; u0 is the initial
excessive pore pressure induced by preloading, p0; ch is the coefficient of consolidation;
de is the diameter of the influencing zone, and de = 2re; l is a factor as follow:

l ¼ n2
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where, n = re/rw, s = rs/rw.
The degree of consolidation is:

Uh;t ¼ 1� �ut=u0
1� u1=u0

¼ u0 � �ut
u0 � ps

ð3Þ

Thus, primary consolidation can be obtained by:

st ¼ spUh;t ð4Þ

where, sp is the ultimate primary consolidation computed by,

sp ¼ Cc

1þ e0
DH log

r
0
z;t

r0
z;0

 !
ð5Þ

where, Cc is compression index; e0 is initial void ratio; r
0
z;t is vertical effective stress at

time t; r
0
z;0 is initial vertical effective stress at time 0.

Except for loading process, the recompression index, Cr, is smaller than Cc.

Secondary consolidation. Secondary consolidation plays an important role in
long-term settlement. If the time to reach the end of primary consolidation is relatively
short which benefits from vacuum consolidation and reloading, the time-dependent
settlement is basically controlled by the secondary consolidation [14].
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Secondary consolidation, ss, is given by the formula:

ss ¼ DH
1þ e0

Ca log
t
t95

� �
ð6Þ

where, Ca is the coefficient of secondary consolidation; t95 is the time when primary
consolidation reaches 95% consolidation degree.

For simplification, the time at the end of construction was taken as t95 in this paper.
A number of authors [15–17] have reported the significant reduction of secondary

consolidation when the soil is over-consolidated even to a modest degree. Laboratory
and field experiments results indicated a decreasing exponential relationship between
over-consolidation ratio (OCR) and Ca. The uniform expression is [16]:

Ca ¼ 10ðAþB�OCRÞ þC ð7Þ

where, A, B, and C are fitting parameters, as recommended in papers [14, 16].
Kosaka [17] proposed the formula to determine OCR as follow:

OCR ¼ r0z;0 þ Dr01 þDr0s
� 	� U

rz;0 þDr0
ð8Þ

where, rz,0 is initial effective stress; Dr’ is effective stress induced by design load; Dr
0
1

is effective stress induced by preloading; Dr
0
s is effective stress induced by vacuum

pressure; U is the consolidation degree at the time of preloading and vacuum removal.

3 Reliability-Based Analysis and Design Approach

3.1 Monte-Carlo Simulation Based on Analytical Solution

The analytical solution of vacuum consolidation and preloading can be incorporated into
reliability procedure by using Monte-Carlo simulation (MCS), as indicated within the
dashed box in Fig. 2. Comparing to deterministic analysis, MCS computes PCS
repeatedly (usually > 5000 times) based on randomly generated samples of soil param-
eters, and perform statistical analysis on output to extract its probabilistic characteristics.
MCS has been widely used in probabilistic analysis of geotechnical engineering prob-
lems, such as slope stability analysis, retaining structures, and foundations [1]. However,
no study was found in vacuum consolidation combined with preloading.

For soil consolidation, obvious correlations exist among soil parameters such as Cc,
and Cr. Thus, these correlations need to be considered in random samples generation.

In this paper, MCS based on the analytical solution was programmed with GNU
software, Octave 4.0.
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3.2 Reliability-Based Design Approach

Geotechnical design codes have been migrating towards RBD concepts for several
decades [18]. The latest International Standard, ISO2394-2015 [19], has differentiated
and related three levels of approach: risk-informed decision making, reliability-based
design (RBD), and semi-probabilistic approaches. Comparing to semi-probabilistic
approaches such as the load and resistance factor design (LRFD) approach in North
American [20], and the characteristic values and partial factors used in the limit state
design approach in Eurocode 7 [21] and AS 5100.3-2004 [22], RBD is based on a
target reliability index that explicitly reflect the uncertainty of the parameters and their
correlation structure, thus more suitable for large scale projects.

As shown in Fig. 2, the reliability index, b, need to be checked in RBD rather than
overall factor of safety. EN1990-2002 [23] recommends the target reliability index, bt,.

Fig. 2. Flowchart of RBD based on MCS
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For PCS, bt for serviceability (irreversible) limit state in 50 years is 1.5. The Chinese
Standard GB 50068-2001 [24] states that, bt is between 0 to 1.5 for serviceability limit
state, depending on the reversibility. The target reliability index of 0 and 1.5 are
equivalent to failure probability of 50% and 6.7%, respectively.

In contrast to probability of failure for ultimate limit state, a low probability of
exceedance needs to achieve for PCS. The concept of probability of exceedance and
design consideration are illustrated in Fig. 3. Assume that settlement conforms rea-
sonable well to a normal or log normal distribution. The probability density function
(PDF) 1 has the same mean value l1, but smaller standard deviation than PDF 2,
namely r1 > r2. The area under each PDF in the excessive settlement zone indicates
probability of exceedance, Pe. Although PDF2 has the same mean value, which is
usually the criterion in design, its Pe is obviously higher than that of PDF 1. This
indicates that, the same design criterion does not necessarily mean the same level of Pe.

With the larger variation level (larger standard deviation) such as in PDF 2, the design
needs to be offset to solution represented by PDF 3, which has the same standard
deviation r2, but stringent design criterion (smaller mean value l2). Each Pe can be
related to a reliability index, b, as indicated in Fig. 3.

Therefore, the variation of settlement can be considered in design criteria to achieve
a specific level of Pe. When the settlement conforms to log normal distribution, Set-
tlement Ratio (SR) can be applied in design according to the COV of settlement and a
target exceedance probability from 6.7% to 25.0%, which is plotted in Fig. 4.

Given the maximum allowable settlement is Sallow, and the COV of settlement is
0.3, if the target Pe is 6.7%, then SR = 1.489 can be obtained from Fig. 4. This means
the design criterion needs to be set at Sallow/1.489 to achieve the Pe of 6.7%, which has
a reliability index of 1.5.

Fig. 3. The concept of Pe and design strategy
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4 Application in Design Review of the Reclamation
of Kalibaru Port

4.1 Project Summary

The Kalibaru port development is located in the Jakarta bay, and will be constructed
from dredged clay and sand materials, as indicated in Fig. 5. The proposed offshore
development includes container terminals (CT2 and CT3), product terminals north of
CT2 and CT3 and reserve area. In total, the area being constructed is approximately
rectangular with dimensions of 2600 m by 900 m.

Fig. 4. Settlement ratio vs. COV for Pe of 6.7%–25.0%

Fig. 5. Kalibaru port, Indonesia
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The naturally occuring seabed is a soft Holocene clay material varying from 8 m up
to 29 m thickness in some areas. This is followed by a stiff Pleistocene clay, and dense
cemented sand. The reclamation works will involve placing grab-bucket dredged mud
(GDM) and cutter-suction dredged mud (CSD) to RL 1.5 m. The water level is con-
sidered to be equal to the water level in the Jakarta Bay, which is RL 0.

Comprehensive geotechnical investigations have been performed prior to the
design. The locations of boreholes and CPT tests are indicated in Fig. 5. Samples were
then tested in laboratory to obtain soil parameters. In the original design, mean value of
each parameter was adopted to assess the PCS. Generally, 90-day vacuum consoli-
dation combined with preloading was proposed by the specialist contractor to target the
criterion of 300 mm in 50 years after construction.

Geoinventions Consulting Services (GCS) was engaged by IPC to review the
design, and RBD procedure was implemented to calibrate the design criterion of PCS.
Deterministic analysis by using FEM was also carried out to consider the influence of
construction stage.

4.2 Deterministic Results by Using FEM

The construction stage of the large-scale reclamation is complex. Preloading and
vacuum pressure have to be applied section by section, due to limited volume of fill and
quantity of pumps. The construction of filling for preloading and installation of PVDs
are time-consuming which also elongate the construction period. To assess PCS under
the real construction process, a 2D finite element software, OptumG2 (version
2017.05.20), was used in the deterministic analysis.

To simplify the modelling process, the analysis for each section starts from the
stage when GDM/CSD have been built up to RL 1.5. The sections of wick drains/PVDs
are modelled using fixed excess pressure lines. These allow the excess pore pressure to
be fixed to any value. Pressure loss of 3 kPa/m was considered and average vacuum
pressure was applied alone the fixed excess pressure lines. Main soil parameters
adopted in the FEM analysis are listed in Table 1. The secondary consolidation
coefficient, Ca, was not tested in the investigations. The test results performed at the
Belawan Port which is approximately 200 km away from the site were used [25].

Table 1. Parameters adopted in Section 3-N analysis

Parameter Upper Holocene Clay Lower Holocene Clay Stiff Clay GDM/CDM

c (kN/m3) 14.3 14.6 15.8 12.0
Cc 0.96 0.85 0.59 1.08
Cr 0.148 0.108 0.046 0.18
Cv (m

2/year) 1.33 1.37 4.43 3.50
Ca 0.036 0.036 – 0.036
e0 3.00 2.54 1.68 3.50
OCR 1.00 1.00 2.50 1.00
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A total of six cross sections have been considered across the project –

Sections. 2-S, 2-N, 3-S, 3-N, 6-S, and 9-S. These sections are shown in Fig. 1. The
settlement results for all six sections is illustrated in Fig. 6. These results indicate that
the maximum total settlement occurs for Section 3-S, with a result of 10.4 m. Figure 6
also indicates that Section 2-N and 3-N exhibit very similar settlement profiles.
Sections 6-S and 9-S are also similar, but exhibit a 1 m difference in total settlement
due to varying soil profile and different construction process. All sections show a
similar gradient to the secondary settlement line (after approx. 1000 days), except for
Section 3-S which has almost doubled the thickness of soft clay.

4.3 Reliability-Based Design Calibration

According to the FEM analysis results, the soft soil and GDM/CDM are most critical
for settlement analysis. GDM/CDM is the dredged layer which can be considered
reasonably uniform. Thus, the thick soft soil layer dominates the variation of PCS.
Statistical analysis was implemented on soft soil based on gathered test results from the
principal geotechnical designer, LAPI. Log normal distribution function was adopted to
fit each parameter. Six parameters: unit weight; compression index, Cc; recompression
index, Cr; Coefficient of consolidation, Cv; secondary consolidation coefficient, Ca, and

Fig. 6. Settlement development by FEM

Table 2. Mean Values and Variation of Parameters

Parameter Mean Value Standard Deviation Range

c (kN/m3) 14.949 2.516 12.26–19.60
Cc 0.883 0.324 0.110–2.080
Cr 0.124 0.012 0.030–0.300
Cv (m

2/year) 4.068 1.666 0.370–4.248
Ca 0.037 0.003 0.001–0.499
e0 2.574 2.515 0.040–3.780
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initial void ratio, e0, are considered in MCS. OCR in Table 1 was ignored in RBD
because of its estimation in tests were rough thus less meaningful to taken into account.

Correlations exist among parameters listed in Table 2. Themost important correlation
is betweenCc andCr. Test results shows that the ratio ofCc/Cr is in a range of 2.81–27.60,
which can be fitted by log normal PDF with log normal parameters lLN = 2.042, rLN =
0.629, and it is in a range of 3–27. In order to obtain the correlated parameters Cc and Cr,
Cc was generated randomly first with parameters listed in Table 3, then the ratio ofCc/Cr

was generated and Cr was obtained by Cc and the ratio. The generated samples and test
data were shown in Fig. 7. The generated samples conform to the range of test data.

Fig. 7. Random generation of correlated parameters in MCS

Fig. 8. Repeatedly settlement calculation in MCS

Monte-Carlo Simulation of Post-construction Settlement 85



Figure 8 illustrated 10,000 times calculated settlement procession results. The
settlement during vacuum and preloading is between 4–23 m depending on parameters
generated in MCS. This is a reasonable result with a mean settlement close to FEM
result. The settlement development shows different patterns due to combination of
parameters.

In total, 10,000 PCS can be obtained in MCS. The absolute value of the output
was statistically analysed with log normal PDF, and the result is shown by histogram in
Fig. 9. The mean PCS is 917 mm, and the coefficient of variation is 1.164. This
indicated a large variation exists because of the variation of soil properties. According
to Fig. 4, the settlement ratio is 2.6, 2.1, 1.7, 1.4, 1.2 when target Pe is 6.7%, 10%,
15%, 20%, 25%, respectively. Taking the target Pe is 20%, GCS sets the design
criterion at 300 mm/1.4 = 214 mm.

5 Conclusions

A reliability-based geotechnical design procedure with analysis approach was proposed
in this paper. And this method was applied in the design review of Kalibaru port,
Indonesia. Based on the practice, conclusions can be drawn as follow:

(1) A design criterion requires to be calibrated by using reliability-based design
method in large scale projects to mitigate potential risk. This guarantees that a target
probability of exceedance can be achieved for PCS in design;

(2) The settlement ratio diagram was developed to determine a settlement criterion
based on the COV of PCS and a target exceedance probability, which is straightforward
in the design process;

(3) The Monte-Carlo simulation based on analytical solution of vacuum consoli-
dation and preloading was coded and incorporated in the RBD of Kalibaru port.

Fig. 9. Probabilistic analysis of MCS outputs
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The COV was found to be 1.164, and the settlement ratios were recommended to target
exceedance probabilities of 6.7%–25%. This RBD strategy can take into account the
uncertainty induced by soil properties variation, and provide a reasonable criterion for
engineering purpose.
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